Single Channel Studies of Inward Rectifier Potassium Channel Regulation by Muscarinic Acetylcholine Receptors
نویسندگان
چکیده
Negative regulation of the heartbeat rate involves the activation of an inwardly rectifying potassium current (I(KACh)) by G protein-coupled receptors such as the m2 muscarinic acetylcholine receptor. Recent studies have shown that this process involves the direct binding of G(betagamma) subunits to the NH(2)- and COOH-terminal cytoplasmic domains of the proteins termed GIRK1 and GIRK4 (Kir3.1 and Kir3.4/CIR), which mediate I(KACh). Because of the very low basal activity of native I(KACh), it has been difficult to determine the single channel effect of G(betagamma) subunit binding on I(KACh) activity. Through analysis of a novel G protein-activated chimeric inward rectifier channel that displays increased basal activity relative to I(KACh), we find that single channel activation can be explained by a G protein-dependent shift in the equilibrium of open channel transitions in favor of a bursting state of channel activity over a long-lived closed state.
منابع مشابه
Identification of domains conferring G protein regulation on inward rectifier potassium channels
Cardiac m2 muscarinic acetylcholine receptors reduce heart rate by coupling to heterotrimeric (alpha beta gamma) guanine nucleotide-binding (G) proteins that activate IKACh, an inward rectifier K+ channel (IRK). Activation of the GIRK subunit of IKACh requires G beta gamma subunits; however, the structural basis of channel regulation is unknown. To determine which sequences confer G beta gamma ...
متن کاملRegulation of IRK3 Inward RectifierK+ Channel by m1 Acetylcholine Receptorand Intracellular Magnesium
Inward rectifier K+ channels control the cell's membrane potential and neuronal excitability. We report that the IRK3 but not the IRK1 inward rectifier K+ channel activity is inhibited by m1 muscarinic acetylcholine receptor. This m1 modulation cannot be accounted for by protein kinase C, Ca2+, or channel phosphorylation, but can be mimicked by Mg2+. Based on quantitative analyses of IRK3 and t...
متن کاملPharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.
Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at dep...
متن کاملDifferential subunit composition of the G protein-activated inward-rectifier potassium channel during cardiac development.
Parasympathetic slowing of the heart rate is predominantly mediated by acetylcholine-dependent activation of the G protein-gated potassium (K+) channel (IK,ACh). This channel is composed of 2 inward-rectifier K+ (Kir) channel subunits, Kir3.1 and Kir3.4, that display distinct functional properties. Here we show that subunit composition of IK,ACh changes during embryonic development. At early st...
متن کاملThe Small GTP-Binding Protein RhoA Regulates a Delayed Rectifier Potassium Channel
Tyrosine kinases activated by G protein-coupled receptors can phosphorylate and thereby suppress the activity of the delayed rectifier potassium channel Kv1.2. Using a yeast two-hybrid screen, we identified the small GTP-binding protein RhoA as a necessary component in this process. Coimmunoprecipitation experiments confirmed that RhoA associates with Kv1.2. Electrophysiological analyses reveal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 116 شماره
صفحات -
تاریخ انتشار 2000